WP 2.6 Pilot studies, dissemination and coordination

WP 2.6

Pilot studies, dissemination and coordination

- Water resources in the HKKH
- Changes in snow resources in mountain areas
- Terrestrial biodiversity in the Alps
- Effect of aerosols in high-altitude areas
- Multi-secular climate simulation for the Med area
- Precipitation in high-elevation regions
- Response of Alpine glaciers to climate change
- •High-res climatological information for a 30 y reference period
- Effect of climate change on Alpine plant germination

The CMIP5 picture of current and future precipitation and snow resources in the Karakoram-Himalaya

Palazzi, von Hardenberg, Provenzale, in prep 2013

Filippi, Palazzi, von hardenberg, Provenzale, in prep 2013

Terzago, von Hardenberg, Palazzi, Provenzale, in prep 2013

List of the CMIP5 models employed in this study. Bold entries indicate the models with a representation of the indirect sulfate aerosol forcing. Starred entries are Earth System Models (ESM).

Name	Horizontal	Institute ID	First	Second	Key
	resolution (°)		indirect	indirect	reference
bcc-csm1-1-m	1.125×1.125	BCC	No	No	
bcc-csm1-1	2.8125×2.8125	BCC	No	No	Wu et al. (2013)
CCSM4	1.25×0.9375	NCAR	No	No	Meehl et al. (2012)
CESM1-BGC	1.25×0.9375	NSF-DOE-NCAR	No	No	
CESM1-CAM5	1.25×0.9375	NSF-DOE-NCAR	No	No	
CMCC-CM	0.75×0.75	CMCC	N/A	N/A	Scoccimarro et al. (2011)
EC-Earth	1.125×1.125	EC-EARTH	No	Ńo	Hazeleger et al. (2012)
FGOALS-g2	2.8125×3	LASG-CESS	N/A	N/A	Li et al. (2013)
*FIO-ESM	2.8125×2.8125	FIO	No	No	Song et al. (2012)
*MPI-ESM-LR	1.875×1.875	MPI-M	No	No	Giorgetta et al. (2013)
*CanESM2	2.8125×2.8125	CCCMA	Yes	No	Arora et al. (2011)
CMCC-CMS	1.875×1.875	CMCC	Yes	No	Davini et al. (2013)
CNRM-CM5	1.40625×1.40625	CNRM-CERFACS	Yes	No	Voldoire et al. (2013)
CSIRO-Mk3-6-0	1.875×1.875	CSIRO-QCCCE	Yes	No	Rotstayn et al. (2012)
INM-CM4	2.000×1.500	INM	Yes	No	Volodin et al. (2010)
*IPSL-CM5A-LR	3.750×1.8947	IPSL	Yes	No	Hourdin et al. (2013)
*IPSL-CM5A-MR	2.500×1.25874	IPSL	Yes	No	Hourdin et al. (2013)
MRI-CGCM3	1.125×1.125	MRI	Yes	No	Yukimoto et al. (2012)
ACCESS1-0	1.875×1.25	CSIRO-BOM	Yes	Yes	Bi et al. (2013)
ACCESS1-3	1.875×1.25	CSIRO-BOM	Yes	Yes	Bi et al. (2013)
HadGEM2-CC	1.875×1.25	MOHC	Yes	Yes	Martin et al. (2011)
*HadGEM2-ES	1.875×1.25	MOHC	Yes	Yes	Bellouin et al. (2011)
MIROC5	1.40625×1.40625	MIROC	Yes	Yes	Watanabe et al. (2010)
*MIROC-ESM	2.8125×2.8125	MIROC	Yes	Yes	Watanabe et al. (2011)
*NorESM1-M	2.500×1.875	NCC	Yes	Yes	Bentsen et al. (2013)

Precipitation time series CMIP5 models and CRU obs.

Only five GCMs (ACCESS-0-1, ACCESS-0-3, HadGEM-CC, HadGEM-ES, and CanESM2) simulate, in agreement with the CRU observations, a statistically significant decreasing trend in **summer precipitation in the Himalayan region** over the years 1901-2005, but for all of them the trends are higher than the one inferred from CRU. All these models do account for the indirect effect of sufate aerosols; 2 of them are Earth System Models.

Himalaya JJAS Significant Precipitation trends and changes

		JJAS	
	Historical	RCP4.5	RCP8.5
	1901-2005	2006-2100	2006-2100
Observations			
CRU	-0.366		
CMIP5 models			
bcc-csm1-1-m	0.017	0.167	0.828
bcc-csm1-1	0.024	0.834	2.076
CCSM4	0.276	0.518	1.740
CESM1-BGC	-0.108	0.824	1.851
CESM1-CAM5	-0.391	2.578	3.790
CMCC-CM	-0.149	0.236	0.981
EC-Earth	0.517	0.003	1.061
FGOALS-g2	0.309	0.924	2.235
FIO-ESM	0.044	-1.543	-0.822
MPI-ESM-LR	-0.121	-0.351	0.150
CanESM2	-1.000	1.561	2.225
CMCC-CMS	0.145	0.606	-0.026
CNRM-CM5	0.191	0.584	1.763
CSIRO-Mk3-6-0	-0.079	0.160	0.773
INM-CM4	0.084	0.769	1.877
IPSL-CM5A-LR	-0.076	0.870	1.025
IPSL-CM5A-MR	0.032	1.463	2.533
MRI-CGCM3	0.066	-0.260	0.326
ACCESS1-0	-0.490	0.745	1.211
ACCESS1-3	-0.529	1.957	2.967
HadGEM2-CC	-0.771	1.718	1.600
HadGEM2-ES	-0.454	1.394	1.356
MIROC5	0.575	2.173	3.678
MIROC-ESM	0.331	1.598	2.389
NorESM1-M	-0.038	1.788	2.419

HKK DJFMA Significant Precipitation trends and changes

	DJFMA			
	Historical	RCP4.5	RCP8.5	
	1901-2005	2006-2100	2006-2100	
Observations				
CRU	0.396			
CMIP5 models				
bcc-csm1-1-m	-0.087	0.128	-0.069	
bce-csm1-1	-0.227	-0.189	0.024	
CCSM4	-0.254	-0.090	-0.279	
CESM1-BGC	-0.263	-0.112	-0.514	
CESM1-CAM5	-0.045	-0.055	0.219	
CMCC-CM	-0.162	0.331	0.307	
EC-Earth	-0.010	0.458	0.333	
FGOALS-g2	0.185	-0.553	-0.573	
FIO-ESM	-0.215	-0.483	-1.090	
MPI-ESM-LR	-0.486	-0.502	-1.090	
CanESM2	0.006	-0.100	0.187	
CMCC-CMS	-0.183	-0.830	-0.794	
CNRM-CM5	0.326	0.159	0.956	
CSIRO-Mk3-6-0	-0.233	0.370	0.537	
INM-CM4	-0.173	-0.093	-0.578	
IPSL-CM5A-LR	-0.242	0.418	-0.580	
IPSL-CM5A-MR	-0.365	0.453	-0.240	
MRI-CGCM3	0.015	0.267	1.092	
ACCESS1-0	0.178	0.009	0.170	
ACCESS1-3	0.128	0.096	0.320	
HadGEM2-CC	-0.104	0.336	0.195	
HadGEM2-ES	-0.030	-0.008	0.307	
MIROC5	-0.045	-0.018	-0.253	
MIROC-ESM	0.025	-0.159	-0.567	
NorESM1-M	0.021	-0.128	-0.103	

Precipitation Annual Cycle (1901-2005) CMIP5 and CRU obs.

Large model spread relative to the model mean (black solid line).

Himalaya: the annual cycle of precipitation is coherently reproduced by the models giving rise to one-modal precipitation distributions during the year (maximum in summer, for most models in July, in very few cases in August).

HKK: The models reproduce precipitation annual cycles with different characteristics.

The multi-model mean indicates an overestimation of the simulated precipitation all over the year (with respect to CRU).

0.0

0.4

0.8

1.2

1.6

2.0

Current snow depth and expected changes in the HKKH mountains from CMIP5 Global Climate Models

- For all CMIP5 GCMs including snow depth variable we considered:
 - Historical runs (1850-2005)
 - Future simulations (RCP4.5 RCP8.5, period 2006-2100)
- Insufficient surface snow depth observations, GCMs compared to ERA-Interim Land and 20th Century Reanalyses in the HKKH

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

Model	Spatial Resolution [°]			
CMCC-CM	0.75			
BCC-CSM1.1m	1.125			
MRI-CGCM3	1.125			
EC-Earth	1.125			
CCSM4	1.25			
CESM1-CAM5	1.25			
CESM1-FASTCHEM	1.25			
CNRM-CM5	1.40625			
MIROC5	1.40625			
ACCESS1-0	1.875			
CMCC-CMS	1.875			
CSIRO-Mk3-6-0	1.875			
inmcm4	2			
CESM1-WACCM	2.5			
GISS-E2-H-CC	2.5			
GISS-E2-H	2.5			
GISS-E2-R-CC	2.5			
GISS-E2-R	2.5			
NorESM1-ME	2.5			
NorESM1-M	2.5			
bcc-csm1-1	2.8125			
CanESM2	2.8125			
FGOALS-g2	2.8125			
FIO-ESM	2.8125			
MIROC-ESM-CHEM	2.8125			
MIROC-ESM-CHEM	2.8125			

[m]

2.0

- DJFMA snow depth spatially averaged over HKKH (1980-2005):
- GCMs with spatial resolution > 1.25° are closer to Reanalyses than the low resolution models
- We explored the seasonal cycle and its expected variations in the 21st century
- GCM ensemble mean compares well to the reanalyses in 1980-2005
- snow depth is expected to decrease in both HKK and Himalya regions

Average DJFMA snow depth in HKKH above 1000 m a.s.l. (1980-2005)

Seasonal snow depth cycle variability

Snow projections 2006-2100

0.0

1850

1900

1950

2000

2050

2100

- High spatial resolution (>1.25°) GCMs' snow depth average fields in HKKH are in good agreement with reanalyses
- GCM ensemble mean compares well with reanalyses, it is reasonable to use it for future simulations.
- GCMs projections indicate strong snow depth reduction in all HKK region, expecially in Himalaya mountains

Mountain biodiversity and its changes

A long-term project in different protected areas, started in 2006

Viterbi et al, Community Ecology 2013

Mountain biodiversity and its changes Projections of biodiversity changes

Viterbi et al, in preparation 2013

Mountain biodiversity and its changes Projections of biodiversity changes

Percentage of contracting, stable and expanding species

Viterbi et al, in preparation 2013

WP 2.6

Pilot studies, dissemination and coordination

- Effect of aerosols in high-altitude areas
- Multi-secular climate simulation for the Med area
- Precipitation in high-elevation regions
- Effect of climate change on Alpine plant germination

Accademia delle Scienze di Torino, maggio 2012 Volume pubblicato da Il Mulino

Filmato "Ecosistemi d'alta quota" di M. Andreini e P. Fioratti

