





# Measurements of biodiversity in north-western Italian Alps



Ramona Viterbi, Cristiana Cerrato, Emanuel Rocchia, Antonello Provenzale

Roma, 3 giugno 2014

### Mountain ecosystems

- Highly vulnerable
- Very sensitive to climate change
  - Provide ecosystems services for lowland

**Protected habitats and species** 

**Endemic and rare species** 

Species with low dispersion potential

**Microthermic species** 

### <u>Altitudinal gradients</u>

Natural laboratories to study ecosystem dynamics, biodiversity, and species' distribution response to climate gradients

Rapp and Silman (2012) Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim Res; Lomolino (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10

## Biodiversity "Hot spot"

### "Single species approach"





To analyse the effects of climate parameters on the population dynamic of species that can act as surrogate of biodiversity

Storch (2007) Indicator of the health status of the entire ecosystem



### "Multi taxa approach"



To describe alpha and beta diversity variation along altitudinal gradients analysing the factors that influence this distribution



Because of the complexity of biodiversity, surrogates such as subsets of species, species assemblages and habitat types have to be used as measures of biodiversity

Margules and Pressey (2000) Systematic conservation planning. Nature 405

### **Objectives**

1. To describe animal biodiversity along altitudinal gradients and identify the parameters influencing species' distribution

2. To identify the (*group of*) species and the habitat type more sensitive to environmental and climatic changes, that can be used as biodiversity/ecological indicators

3. To estimate the potential risk of biodiversity loss, also applying climate change scenarios

4. To set the basis for the development of a long term monitoring scheme, focused on multi-taxa community data







#### A multi taxa approach to assess pattern of congruence and diversity

- description of alfa and beta diversity variation along altitudinal gradients
- analysis of the relative influence of geographical, environmental and climatic factors on biodiversity structure and community composition





#### A multi taxa approach to assess pattern of congruence and diversity

- description of alfa and beta diversity variation along altitudinal gradients
- analysis of the relative influence of geographical, environmental and climatic factors on biodiversity structure and community composition





#### A multi taxa approach to assess pattern of congruence and diversity

- description of alfa and beta diversity variation along altitudinal gradients
- analysis of the relative influence of geographical, environmental and climatic factors on biodiversity structure and community composition





#### Multi taxa approach

#### Gran Paradiso National Park 5 Transects, 30 Plots



#### Orsiera Rocciavré Natural Park 4 Transects, 20 Plots



Comparison of elevational trends in diversity among taxa and among mountain ranges is fundamental in order to gain a more comprehensive understanding of patterns of diversity.

Lomolino, 2001. Elevation gradients of species -density: historical and prospective views. Global Ecology and Biogeography

Conclusive evidence for or against the existence of the predicted biological effects of climate change will come from replication of study with additional taxa in other regions. *Parmesan, 1996. Climate and species' range. Nature* 

#### Alpe Veglia Devero Natural Park

3 Transects, 19 Plots



#### 2012-2014 - Fondi ministeriali ex capitolo 1551 - Azioni di sistema



### Two years of monitoring

### Taxa studied

annual fluctuation

e.g., population dynamic, mostly invertebrates

- lyfecicle
- e.g., biennial species

### Mountain ecosystems

- harsh environment
- high variability (local and annual)







4-7 plots for every transect
69 plots
Altitudinal range: 500 – 2700 m
3 vegetation belts: Montane, Subalpine, Alpine





















## Census techniques as much as possible

- Easy to apply
- <u>Standardized</u>

• <u>Cheap</u>

Repeatability over time (4 years) of transects in order to analyse variations



Slope - Exposure Altitude

Percentage of vegetation cover (tree, shrub, grass, rock)

Structural diversity

Phytosociological surveys

Topographic description

Macro-habitat condition

Micro-habitat description

Microclimatic condition

Data-loggers





## **Species Richness** Hump-shaped decline

```
S = exp (2.841 + 0.002 \text{ Alt} - 6.420e^{-07})
Alt<sup>2</sup>)
D_{adj}^2 = 0.425
p < 0.0001
```

### Vulnerable and Endemic Species

### Increase with altitude

*logit* (proportion of vulnerable species) = -5.701 + 0.002 Alt  $D_{adj}^2 = 0.535$ p < 0.0001



Viterbi et al., 2013. Patterns of biodiversity in the northwestern Italian Alps: a multi-taxa approach. Community ecology 14: 18-30

Nor 2001,



### Relation among environmental variables and species richness (S)

|                  | Alt      | Temp    | Str Div | Tree%   | TShr%  | LShr%  | HerbL% | Rock%    |
|------------------|----------|---------|---------|---------|--------|--------|--------|----------|
| AND INC.         | -0.435** | 0.415*  | 0.147   | 0.374   | 0.154  | 0.273  | 0.028  | -0.509** |
| NO NO            | -0.208   | 0.198   | 0.009   | -0.232  | 0.061  | -0.145 | 0.373  | -0.225   |
|                  | -0.566** | 0.565** | 0.289   | 0.428** | 0.326  | 0.248  | -0.111 | -0.367   |
|                  | -0.409** | 0.485** | 0.313   | 0.306   | 0.386* | 0.318  | -0.007 | -0.054   |
|                  | -0.449** | 0.451** | 0.089   | 0.289   | 0.246  | 0.284  | 0.048  | -0.422** |
| S <sub>tot</sub> | -0.519** | 0.562** | 0.192   | 0.302   | 0.270  | 0.272  | 0.104  | -0.406*  |

<u>StrDiv</u>=Structural Diversity <u>Tree%</u>=percentage of tree coverage <u>TShr%</u>=percentage of tall shrub coverage <u>LShr%</u>=percentage of low shrub coverage <u>HerbL%</u>=percentage of herbaceous layer coverage <u>Rock%</u>=percentage of rock coverage



Variation Partitioning on Species Richness

Shared and pure effect of *temperature* and *altitude* 



### Peculiarities of the alpine belt:

![](_page_17_Figure_1.jpeg)

### **Peculiarities of the alpine belt:**

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

#### **Community Composition**

**Correspondence Analysis** 

![](_page_19_Picture_3.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_20_Picture_0.jpeg)

|                         | Alt      | Temp     | Str Div  | Tree%    | TShr%    | LShr%   | HerbL% | Rock%  |
|-------------------------|----------|----------|----------|----------|----------|---------|--------|--------|
|                         | -0.567** | 0.657**  | 0.328    | 0.232    | 0.326    | -0.049  | 0.037  | 0.058  |
|                         | -0.574** | 0.623**  | 0.293    | 0.328    | 0.418*   | 0.261   | -0.112 | -0.026 |
|                         | 0.911**  | -0.852** | -0.430** | -0.800** | -0.674** | -0.377* | 0.388* | 0.234  |
|                         | 0.860**  | -0.882** | -0.353   | -0.610** | -0.612** | -0.191  | 0.276  | 0.043  |
|                         | -0.818** | 0.849**  | 0.400**  | 0.500**  | 0.581**  | 0.171   | -0.158 | -0.117 |
| ScoreAx1 <sub>tot</sub> | -0.889** | 0.918**  | 0.399*   | 0.569**  | 0.600**  | 0.214   | -0.212 | -0.138 |

Gradient is mostly determined by:

- Altitude - Microclimatic conditions

![](_page_21_Picture_0.jpeg)

|               | Temperature | Altitude | Belt     | Geography |                                |
|---------------|-------------|----------|----------|-----------|--------------------------------|
| Carabidae     | 0.228***    | (n.s.)   | *        | ***       |                                |
| Lepidoptera   | 0.390***    | *        | ***      | ***       |                                |
| Araneae       | 0.316***    | (n.s.)   | **       | ***       | Controlling for<br>Temperature |
| Staphylinidae | 0.245***    | (n.s.)   | *        | ***       | remperature                    |
| Aves          | 0.398***    | ***      | ***      | (n.s.)    |                                |
| Carabidae     | ***         | 0.178*** | (n.s)    | ***       |                                |
| Lepidoptera   | ***         | 0.350*** | ***      | ***       |                                |
| Araneae       | ***         | 0.255*** | *        | ***       | Controlling for<br>Altitude    |
| Staphylinidae | ***         | 0.204*** | (n.s)    | ***       |                                |
| Aves          | (n.s.)      | 0.523*** | ***      | **        |                                |
| Carabidae     | ***         | **       | 0.149*** | ***       |                                |
| Lepidoptera   | ***         | ***      | 0.354*** | ***       |                                |
| Araneae       | ***         | **       | 0.221*** | ***       | Controlling for<br>Belt        |
| Staphylinidae | ***         | **       | 0.149*** | ***       | Den                            |
| Aves          | ***         | * * *    | 0.594*** | **        |                                |
| Carabidae     | ***         | ***      | ***      | 0.305***  |                                |
| Lepidoptera   | ***         | ***      | ***      | 0.285***  |                                |
| Araneae       | ***         | ***      | ***      | 0.237***  | Controlling for<br>Geography   |
| Staphylinidae | ***         | ***      | ***      | 0.164***  | orography                      |
| Aves          | ***         | ***      | ***      | 0.110*    |                                |

Controlling for temperature altitude lost importance

Bonferroni corrected p-values:\*= p<0.01;\*\*= p<0.001;\*\*\*= p<0.0001;n.s. = not significant

Mantel test; Partial Mantel test Jaccard Estimator index Chao et al. 2005

![](_page_22_Picture_0.jpeg)

|               | Temperature | Altitude | Belt     | Geography |                                | Controlling for                    |  |
|---------------|-------------|----------|----------|-----------|--------------------------------|------------------------------------|--|
| Carabidae     | 0.228***    | (n.s.)   | *        | ***       |                                |                                    |  |
| Lepidoptera   | 0.390***    | *        | ***      | ***       |                                | lost importance                    |  |
| Araneae       | 0.316***    | (n.s.)   | **       | ***       | Controlling for<br>Temperature |                                    |  |
| Staphylinidae | 0.245***    | (n.s.)   | *        | ***       | remperature                    |                                    |  |
| Aves          | 0.398***    | ***      | ***      | (n.s.)    |                                |                                    |  |
| Carabidae     | ***         | 0.178*** | (n.s)    | ***       |                                | Strong link of                     |  |
| Lepidoptera   | ***         | 0.350*** | ***      | ***       |                                | community composition              |  |
| Araneae       | ***         | 0.255*** | *        | ***       | Controlling for<br>Altitude    | of invertebrates to<br>temperature |  |
| Staphylinidae | ***         | 0.204*** | (n.s)    | ***       | Annude                         |                                    |  |
| Aves          | (n.s.)      | 0.523*** | ***      | **        |                                | 5                                  |  |
| Carabidae     | ***         | **       | 0.149*** | ***       |                                | Birds show a                       |  |
| Lepidoptera   | ***         | ***      | 0.354*** | ***       |                                | different pattern                  |  |
| Araneae       | ***         | **       | 0.221*** | ***       | Controlling for<br>Bolt        | ↓<br>Endothermic                   |  |
| Staphylinidae | ***         | **       | 0.149*** | ***       | Den                            |                                    |  |
| Aves          | ***         | ***      | 0.594*** | **        |                                |                                    |  |
| Carabidae     | ***         | ***      | ***      | 0.305***  |                                |                                    |  |
| Lepidoptera   | ***         | ***      | ***      | 0.285***  | Controlling for<br>Geography   |                                    |  |
| Araneae       | ***         | ***      | ***      | 0.237***  |                                |                                    |  |
| Staphylinidae | ***         | ***      | ***      | 0.164***  | Geography                      |                                    |  |
| Aves          | ***         | ***      | ***      | 0.110*    |                                |                                    |  |

Bonferroni corrected p-values:\*= p<0.01;\*\*= p<0.001;\*\*\*= p<0.0001;n.s. = not significant

Mantel test; Partial Mantel test Jaccard Estimator index Chao et al. 2005

![](_page_23_Picture_0.jpeg)

|               | Temperature          | Altitude       | Belt            | Geography        |                                | Controlling for                                                               |
|---------------|----------------------|----------------|-----------------|------------------|--------------------------------|-------------------------------------------------------------------------------|
| Carabidae     | 0.228***             | (n.s.)         | *               | ***              |                                | temperature altitude<br>lost importance                                       |
| Lepidoptera   | 0.390***             | *              | ***             | ***              |                                |                                                                               |
| Araneae       | 0.316***             | (n.s.)         | **              | ***              | Controlling for<br>Temperature |                                                                               |
| Staphylinidae | 0.245***             | (n.s.)         | *               | ***              | remperature                    |                                                                               |
| Aves          | 0.398***             | ***            | ***             | (n.s.)           |                                |                                                                               |
| Carabidae     | ***                  | 0.178***       | (n.s)           | ***              |                                | Strong link of                                                                |
| Lepidoptera   | ***                  | 0.350***       | ***             | ***              |                                | community composition                                                         |
| Araneae       | ***                  | 0.255***       | *               | ***              | Controlling for                | of invertebrates to<br>temperature                                            |
| Staphylinidae | ***                  | 0.204***       | (n.s)           | ***              | Annual                         |                                                                               |
| Aves          | (n.s.)               | 0.523***       | ***             | **               |                                |                                                                               |
| Carabidae     | ***                  | **             | 0.149***        | ***              |                                | Birds show a<br>different pattern<br>↓<br>Endothermic                         |
| Lepidoptera   | ***                  | ***            | 0.354***        | ***              |                                |                                                                               |
| Araneae       | ***                  | **             | 0.221***        | ***              | Controlling for<br>Belt        |                                                                               |
| Staphylinidae | ***                  | **             | 0.149***        | ***              | Den                            |                                                                               |
| Aves          | ***                  | ***            | 0.594***        | **               |                                |                                                                               |
| Carabidae     | ***                  | ***            | ***             | 0.305***         |                                | The variance<br>explained by<br>geographic distance<br>cannot be attributable |
| Lepidoptera   | ***                  | ***            | ***             | 0.285***         | Controlling for<br>Geography   |                                                                               |
| Araneae       | ***                  | ***            | ***             | 0.237***         |                                |                                                                               |
| Staphylinidae | ***                  | * * *          | ***             | 0.164***         |                                |                                                                               |
| Aves          | ***                  | ***            | ***             | 0.110*           |                                |                                                                               |
| Bor           | nferroni corrected p | o-values:*= p< | :0.01;**= p<0.0 | 001;***= p<0.000 | 01;n.s. = not significant      | to any other factor                                                           |

Mantel test; Partial Mantel test Jaccard Estimator index Chao et al. 2005

# Effects of temperature increase scenarios on multitaxa distribution in mountain ecosystems

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

## Assess the risk of alpine biodiversity modification in relation to climate change

Viterbi et al., 2013. Effects of temperature rise on multi-taxa distribution in mountain ecosystems. Submitted to Oecologia

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

> increase of *maximum temperature* 

Beniston (2006) Ciccarelli et al (2008)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

-6

Montane

Alpine

Subalpine

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

For endemic and vulnerable species decreased the number of occupied plots

Species richness increased in the alpine belt

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_31_Picture_0.jpeg)

- # Species richness and community composition are mostly determined by:
- Altitude
- Microclimatic conditions
- # Peculiarities of Alpine belt :
  - Low values of species richness
  - High percentage of endemic and vulnerable species
- # Strong link of invertebrates' community to temperature:
- Potential sensitivity to climatic variation

### # Moderate temperature increase scenarios:

- Influence species richness and community composition
- Affect mostly endemic and vulnerable species
- Increase alpine belt species richness, decrease the one in the subalpine

![](_page_31_Picture_13.jpeg)

### In progress...

### Temporal and Spatial β-diversity

Change in community structure through space and time Species or functional groups responsible of change

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_4.jpeg)

<u>Nestdness</u>: non-random process of species loss

Variation: multivariate dispersion or variance in community structure

Loss of variation at different altitude (biotic homogenization)

Anderson et al. (2011) Navigating the multiple meaning of β-diversity: a roadmap for the practicing ecologist. Ecol Lett 14: 19-28 Baselga (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol Biogeogr 21: 1223-1232

![](_page_32_Picture_9.jpeg)

### Time Series: Butterfly

### Respond quickly and faster than other groups Can act as indicators of changes in other taxa

![](_page_33_Picture_2.jpeg)

Parmesan (2003) University of Chicago Press; Thomas et al. (2004) Nature; Devictor et al. (2012) Nat Clim Change Hellmann (2002) Island Press; Thomas (2005) Phil Trans R Soc B

### Butterfly Monitoring Scheme In many European countries, but lacking in Italy

e.g. Roy et al. (2001) J Animal Ecol; Franco et al. (2006) Glob Change Biol; Pöyry et al. (2009) Glob Change Biol; Stefanescu et al. (2011) Glob Change Biol; WallisDeVries et al. (2011) Oecologia

### **Time Series: Butterfly**

### Respond quickly and faster than other groups Can act as indicators of changes in other taxa

![](_page_34_Picture_2.jpeg)

Parmesan (2003) University of Chicago Press; Thomas et al. (2004) Nature; Devictor et al. (2012) Nat Clim Change Hellmann (2002) Island Press; Thomas (2005) Phil Trans R Soc B

### Butterfly Monitoring Scheme In many European countries, but lacking in Italy

e.g. Roy et al. (2001) J Animal Ecol; Franco et al. (2006) Glob Change Biol; Pöyry et al. (2009) Glob Change Biol; Stefanescu et al. (2011) Glob Change Biol; WallisDeVries et al. (2011) Oecologia

- 2 altitudinal gradients Valle Orco and Valle Soana
- Altitudinal range: 1200-2400 m
- Sampling stations: 13
- 9 monitoring years: 2006-2014
- **Time-series** analysis

Continuous vs interupted monitoring 9 years vs 2 years monitoring-4 years stop-2 years monitoring

![](_page_34_Picture_12.jpeg)

![](_page_34_Picture_13.jpeg)

### Indicator of Climate Change

Climate change scenarios

Key *indicator species*, for each taxon, selected from the field surveys

- Different functional groups
- Altitudinal specialists vs generalists

![](_page_35_Picture_5.jpeg)

Data on *bioclimatic limits* obtained from primary literature and confirmed by expert opinion

Maximum Entropy Model Philips et al. (2006) Maximum entropy modeling of species geographic distribution. Ecol Mod 190: 231-259

Boosted Regression Trees Elith et al. (2008) A working guide to boosted regression trees. J Animal Ecol 77: 802-813

Hierarchical Bayes Models Kery and Royle (2008) Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys

### Increasing the number of scenarios to identify the temperature threshold beyond which the risk of biodiversity loss will be extremely elevated

Summers et al. (2012) Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biol 18: 2335-2348; McMahon et al. (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trend Ecol Evol 26: 249-259:

### Body-size along Altitudinal gradient

### <u>Body size</u>

- thermoregulation
- energy and mass acquisition
- life-history
- fecundity

Resilience in the face of climate change Fluctuating Asymmetry

Chown and Gaston (2010) Body size variation in insects: a macroecological perspective

Understanding the mechanistic links between body size and environmental heterogeneity will identify key traits that shape the potential of a species to respond to climate change and provide insights into thermal tolerances, information that is currently lacking for most species

Gardner et al. (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26

### **Body-size along Altitudinal gradient**

### <u>Body size</u>

- thermoregulation
- energy and mass acquisition
- life-history
- fecundity

Resilience in the face of climate change Fluctuating Asymmetry

Chown and Gaston (2010) Body size variation in insects: a macroecological perspective

Understanding the mechanistic links between body size and environmental heterogeneity will identify key traits that shape the potential of a species to respond to climate change and provide insights into thermal tolerances, information that is currently lacking for most species

Gardner et al. (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26

Coleoptera Carabidae 5 species (200-500 specimens per species) 11 parameters

![](_page_37_Picture_11.jpeg)

Widespread along the altitudinal gradient (1200-2600 m) and the 3 areas

Relative role of

<u>Abiotic Factors</u> Altitude, Temperature, Rainfall <u>Biotic Factors</u> Nutrition/Food availability, Competition/Facilitation Vegetation surveys, Macro-invertebrates sampling

![](_page_38_Picture_0.jpeg)

Thanks for your attention!