

Project of Strategic Interest NEXTDATA

Deliverables D1.3.B and 1.3.C

Final Report on the quality of Reconstruction/Reanalysis products

WP Coordinator: Nadia Pinardi INGV, Bologna

> Deliverable authors Claudia Fratianni INGV, Bologna

Contents

Abstract	
Introduction	4
Validation Results	5
Sea Surface Temperature quality	5
Temperature profiles quality	7
Salinity profiles quality	
Sea surface height quality	
Gibraltar transport quality	
Circulation structure quality	
Conclusions	
Bibliography	

Abstract

This document describes the quality of the Reconstruction/Reanalysis (hereafter RR) products that have been produced for the period 1955-2015. The quality of the products has been assessed by comparing the results with available observations, consolidated climatology products and current knowledge of the ocean circulation. The International standards, defined by the GODAE metrics, have been followed in terms of consistency, quality and performance. The consistency has been validated with the current knowledge of the ocean circulation and climatology, while quality and performance have been measured through comparison with reference observational datasets. The so-called Class1, Class3 and Class4 have been applied as follows:

- **Class1:** long-term averaged maps of a particular ocean variable compared to reference datasets;
- **Class3:** integrated quantities, such as temperature and salinity volume as a function of time, in standard layers, surface heat and water fluxes;
- **Class4:** measure of the performances of the reanalysis and of its capability to represent the ocean state consistently with the observations.

Introduction

One of the main issues related to the use of reanalysis products is their quality assessment. Building on consolidated practices, this task is related to the need of providing a range of uncertainty associated with the results of the reanalysis.

The RR products have been evaluated for the period 1 January 1955 - 31 December 2015, considering a set of standardized metrics grouped by ocean state variables and applied in order to assess scores that measure to the quality of the products.

The reanalysis outputs were compared to available observational datasets, using both **insitu and satellite data**; the model estimates were interpolated at the location of the observations. The general methodology used to validate RR products consists in an extension of the diagnostics developed by *Adani et al., 2011,* based on the misfits.

In the data assimilation process, the observation operator *h* is used to interpolate the model field (background) x^{t} to the location (in time and space) of the observations, *y*. This enables the calculation of *misfits*:

$$m = [y - h(x^f)]$$

Misfits have been calculated before observations are included; observations can be considered independent since the they are sparse in space and time. The deviations between the background and the observations are quantified in terms of RMSE and BIAS scores.

The RMSE provides estimates of the precision of the model in reproducing the amplitude of the signals and serves to aggregate time varying differences or errors into a single measure of predictive power. The RMSE undervalues the phase errors in the fields. The RMSE value is not dimensionless but exhibits the same units as the validated field.

The BIAS indicates possible systematic errors in the products, assuming that the observational dataset represents the truth.

These statistics have been calculated considering the observations listed in Table 1,

Deleted: Table 1

DATA TYPE	Producer
61 A	SEALEVEL_MED_SLA_L3_REP_OBSERVATIONS_008_020
JLA	SEALEVEL_MED_SLA_L3_NRT_OBSERVATIONS_008_019
	Coriolis and INSITU TAC dataset
ARGO	INSITU_MED_NRT_OBSERVATIONS_013_035
	INSITU_GLO_NRT_OBSERVATIONS_013_030
ХВТ	MEDATLAS, MFS (Enea), INSITU-TAC dataset
СТD	SeaDataNet, MEDATLAS, MFS (Enea), INSITU-TAC dataset
	in-situ SeaDataNet product (FREE access temperature Salinity
	Observations)
	in-situ SeaDataNet product (RESTRICTED access temperature
	Salinity Observations)
	MEDAR MEDATLAS (Historical data)
SST	Met Office Hadley Centre SST dataset (HadSST1)

Table 1 : Observational datasets used to evaluate RR products.

Validation Results

Sea Surface Temperature quality

The assessment of the Sea Surface Temperature (SST) has been performed in terms of:

Class1: Maps of annual mean monthly mean RMSE and BIAS for different variables;

Class3: Time series of domain averaged monthly surface heat flux computed from RR products;

Class4: Time series of monthly RMSE for different variables.

Figure 1, shows the RMSE and BIAS, as function of time, between monthly mean SST from the RR and the satellite Hadley data over the period 1955-2015. Both statistics present a seasonal signal, with largest RMSE values during spring-early summer, to which a warm BIAS corresponds.

Figure 2, shows SST RMSE and BIAS averaged maps over the entire period 1955-2015. The maps highlight the areas where the major model deficiencies are found, which correspond to the regions where, owing to uncertainties in atmospheric forcing, a positive bias is found, as shown in *Pettenuzzo et al., 2010.* Negative BIAS and large positive RMSE values appear in the upwelling areas of the Mediterranean Sea, such as the Eastern Adriatic, over Southern Sicily and in the eastern Aegean Sea. Larger errors are also present in open ocean areas such as the northwestern Mediterranean and the Southern Ionian Sea, as well as in areas influenced by river runoff, such as the Northern Adriatic Sea.

Deleted: Figure 1

Figure 2: SST RMSE (top) and BIAS (bottom) maps computed on monthly basin from RR products and satellite reference dataset.

The performance of RR for SST is summarized in Table 2;

Parameter	BIAS	RMS
SST [°C]	0.22±0.3	0.59±0.16
Table 2: Summary of SST performance.		

Figure 3, shows the net heat flux time series computed from RR products. The net heat budget is equal to 0 W/m^2 , higher than the negative heat flux value of $-4 \pm 3 \text{ W/m}^2$ found in Pettenuzzo et al., 2010.

Deleted: Table 2

Deleted: Figure 3

6

Temperature profiles quality

The vertical temperature structure has been evaluated considering the following metrics:

Class3: Comparison between RR products and reference data (SDN climatology) of monthly climatology and monthly profiles averaged over the basin;

Class3: Time series of RR temperature at different layers;

Class4: RMSE and BIAS, computed for different layers as function of time and depth.

Figure 4, shows the difference of the monthly climatology of temperature and of the monthly temperature profiles (averaged over the basin) between the RR product and the SeaDataNet (SDN) climatology (our reference) as a function of depth, up to 1000m. Starting from the surface, and considering the differences as monthly climatology (upper panel), from May to September, the reanalysis product is warmer (~0.3 °- 0.8°C) than the SDN climatology within the first 15 m, while it is colder (~0.1°-0.2°C) between 15-50m of depth. From September to December, the largest differences are found between 20-50m and they are positive, indicating that the reanalysis is warmer than the SDN climatology. Positive differences (~0.2°C) are present also from January to March, around 120m.

The differences between reanalysis and SDN climatology as monthly basin averaged profiles (bottom panel of Fig.4) oscillate between negative and positive values, owing to the large interannual variability of the summer thermocline. Starting from the late 1900s positive anomalies extends from the surface up to 200m of the water column almost all year long, while below 200m a negative anomaly (~0.5°C) dominates.

Figure 4: Monthly climatology (up) and monthly basin averaged profiles (bottom) comparison between RR products and SDN climatology.

Figure 5, shows the time series of temperature in different layers over the Mediterranean Sea. The first layer (0-30m) presents a clear seasonal signal with the highest values during summertime (~26°C) and lowest values during wintertime (~15°C). This layer is highly influenced by the atmospheric forcing and is where the seasonal thermocline evolves.

Figure 5: Temperature monthly mean from RR products.

Figures 6 and 7 present the RMS and BIAS computed in different layers at the location and time of the observations.

Figure 8, shows the temperature BIAS and RMSE as a function of depth, averaged up to 1000m over the entire reanalysis period. Deeper layers have not been considered because observations are too sparse in both time and space to provide statistically significant results. The BIAS exhibits maximum positive values (~0.2°C) at the surface, while below 200m it is negative. The RMSE peaks at about 30m of depth (>0.8°C). The water column averaged BIAS and RMSE are, respectively, 0.02°C while and 0.4°C.

Figure 8:BIAS and RMSE profiles.

Overall metrics of the comparison between the RR and reference temperature are summarized in Table 3.

TEMPERATURE [°C]	BIAS	RMS
0 -30 m	0.16 ± 0.4	0.82 ± 0.42
30 -150 m	0.09 ± 0.23	0.57 ± 0.25
150 - 300 m	-0.01 ± 0.15	0.27 ± 0.1
300 - 600m	0.05 ± 0.12	0.18 ± 0.07
600 -1000m	-0.08 ± 0.2	0.14 ± 0.07
Total	-0.02 ± 0.004	0.4 ± 0.02

Table 3: BIAS and RMSE at different layers and in total.

Deleted: Table 3

Salinity profiles quality

The assessment of salinity vertical structure has been performed in terms of:

Class3: Averaged monthly mean over the Mediterranean Sea;

Class3: Mediterranean Sea averaged monthly fresh water flux;

- Class3: Monthly climatology and monthly basin averaged profiles comparison against SDN climatology;
- **Class4:** RMSE and BIAS time series computed from misfits as a function of time at different layers and as function of depth.

Figure 9, shows the temporal evolution of the Sea Surface Salinity (SSS). Its long-term average is 38.14 psu and it oscillates around 38.1psu until 2005 when starts to increase.

Deleted: Figure 9

Figure 10, shows the net water flux that does not show any signal of abrupt change. This suggests that the reason for its increase cannot be due to the water budget change and could be connected to the ARGO profiles, which started to provide systematic measurements in the Mediterranean Sea since 2005.

Fig. 11 shows the salinity monthly climatology and monthly averaged profiles comparison against SDN climatology up to 1000m. Considering the monthly climatology (top), RR is fresher than the SDN climatology within the first 200m of depth, while below it is saltier.

Considering the comparison as function of time (bottom), starting from 2005, RR presents a positive trend.

Figure 12, - Figure 13, present the RMS and BIAS computed in different layers at observation space-time location. The RMSE starts to decrease together with the advent of ARGO in the Mediterranean Sea (2005).

I

Deleted: Figure 12 Deleted: Figure 13

Figure 14, displays salinity BIAS (left) and RMS (middle) mean profiles computed on the misfits. Salinity BIAS is negative within the first 200m and positive below. The RMSE reaches maximum value of 0.3psu at the surface where the atmospheric and land forcing play a fundamental role and decreases below 0.1psu below 150m of depth.

Figure 14: BIAS and RMSE profiles.

The total statistics are included in Table 4,

Salinity [psu]	BIAS	RMS
0 -30 m	-0.06 ± 0.13	0.25 ± 0.12
30 -150 m	-0.06 ± 0.09	0.17 ± 0.08
150 - 300 m	0 ± 0.04	0.08 ± 0.04
300 - 600m	0.02 ± 0.03	0.05 ± 0.02
600 -1000m	0.05 ± 0.04	0.06 ± 0.03
Total	0.01 ± 0.004	0.12 ± 0.01

Table 4: BIAS and RMSE in different layers and in total.

Sea surface height quality

The Sea Surface Height has been evaluated considering:

• Class4: Sea Level RMSE averaged over the whole domain.

Figure 15 shows the time evolution of basin-averaged RMS of the SLA misfit computed along satellite tracks over the altimeter time period (1993-2015) on a monthly basin. The RMSE remains quite stable up to 2012, then it starts to increase due to the decrease in the number of observations. The mean value is around 3.7cm, smaller than the RMSE of the observations which is estimated of about 5cm for the Mediterranean Sea.

Deleted: Figure 15

Deleted: Table 4

The total statistics are included in Table 5.

Sea Level Anomaly [cm]	BIAS	RMS
SLA	-0.09± 0.02	3.76 ± 0.65
Table 5: SLA BIAS and RMSE.		

Gibraltar transport quality

The Gibraltar transport has been evaluated considering:

Class3: Monthly time series of net volume transport through the Gibraltar Strait.

Monthly time series of net volume transport through the Gibraltar Strait is displayed in Transports at Gibraltar [Sv]

Figure 16, together with the westward and eastward components. The eastward inflow component is slightly higher than the westward outflow component determining a long-term net value of 0.04Sv with a standard deviation of 0.06Sv. These values are coherent with the literature (*Menemellis et al., 2007*).

Deleted: Table 5

Circulation structure quality

The general circulation structure has been evaluated considering the following metric:

Class1: Maps of Mediterranean Sea surface mean currents at 15m depth computed over different time periods.

Figure 17, displays maps of surface mean currents at 15m of depth computed from the reanalysis product over two different time periods, 1987-1996 and 1997-2006, in order to study the decadal variability of the Mediterranean Sea circulation as in *Pinardi et al., 2015*. The mean surface circulation is in agreement with literature results and presents the well-known Mediterranean surface circulation features.

The changes between 1987-1996 and 1997-2006 occur in the Alboran Sea and in the Tyrrhenian Sea (Western Mediterranean), while the circulation becomes stronger in the Eastern Mediterranean Sea. The major change occurred in the Eastern Mediterranean where a current reversal took place in the Northern Ionian Sea related to the Eastern Mediterranean Transient phenomena.

Conclusions

The quality of the RR has been assessed for the period 1955 to 2015 by comparing results with available observations, consolidated climatological products and current knowledge of the ocean circulation.

The quality of the product changes proportionally to the data availability, as shown in the assessment of ocean state variables (salinity, temperature and sea level anomaly), and the performance of the reanalysis increased with time, partially due to the number of assimilated ocean observations.

The product quality suggests that the overall performance of the reanalysis is satisfactory: the ocean state is well constrained by the observations and the ocean physics represents the major climatic change occurred between the 1980s and 1990s in the Northern Ionian Sea.

Bibliography

- Adani M., Dobricic, S. Pinardi N., 2011: Quality Assessment of a 1985–2007 Mediterranean Sea Reanalysis. J. Atmos. Oceanic Technol., 28, 569–589. doi: <u>http://dx.doi.org/10.1175/2010JTECH0798.1</u>
- 2. Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean sea level difference driven by winds near Gibraltar Strait, J. Phys. Oceanogr., 37, 359–376, 2007
- Pettenuzzo, D., Large, W. G., & Pinardi, N. (2010). On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. Journal of Geophysical Research: Oceans (1978–2012), 115(C6). doi:10.1029/2009JC005631.
- Pinardi N., M. Zavatarelli, M. Adani, G. Coppini, C. Fratianni, P. Oddo, S. Simoncelli, M. Tonani, V. Lyubartsev, S. Dobricic, A. Bonaduce. (2015). Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography. doi: <u>10.1016/j.pocean.2013.11.003</u>