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This deliverable is structured into two sections, the first describes the phenomenon which 
is referred to as Elevation-Dependent Warming (EDW) and the second introduces the 
database that has been used to assess EDW and its characteristics, with special focus on 
EDW future projections in the Alpine region. 

 
1. Elevation-Dependent Warming 

The average global temperature on Earth has increased of about 1°C since 1880, the time 
around which the measuring stations started to sufficiently cover enough of the planet to 
have reliable and homogeneous temperature timeseries. A one-degree temperature 
increase averaged over the globe is a significant amount mainly for two reasons. One is 
that it takes a vast amount of additional heat stored in the Earth climate system to warm 
the oceans, the atmosphere, and the land by that much. The other is that such an averaged 
amount translates into a temperature increase which can differ a lot from one region to 
another. Warming is not uniform across the globe indeed. For example, it is generally 
greater over land than over the oceans. Some land areas, moreover, have warmed more 
and faster than others or compared to the globally-averaged temperature increase. One 
generally refers to these areas as climate “hot-spot” regions. Hot-spots, both because they 
undergo greater warming rates than the rest of the globe and also because the impact of 
the temperature increase in these regions is amplified, compromising mountain 
ecosystems and the services which they provide. The enhancement of warming rates with 
elevation is referred to as elevation-dependent warming, or EDW (Pepin et al., 2015). 
EDW has important implications for the mass balance of the high-altitude cryosphere 
leading to consequences for water storage in the various reservoirs and for future water 
availability, thus impacting on downstream societies. 

In recent years, the number of studies that have analysed EDW has increased (see Pepin 
et al. 2015 for a comprehensive review on this topic). These studies differ in the type of 
data that have been employed, in the considered mountain ranges, and in the methods of 
analysis used to identify and quantify EDW.  

Causes of EDW 

Several mechanisms have been recognized as possible drivers of EDW. A full review of 
them can be found in Rangwala et al (2012) and in Pepin et al (2015), and references 
therein. Causes of EDW can be associated with either an elevation-dependent change in 
key variables such as snow and ice cover, clouds, water vapor amount, aerosols, soil 
moisture, or an elevation-dependent sensitivity of surface warming to changes in these 
possible drivers. This already suggests that EDW is a complex phenomenon, complicated 
by a number of variables which interact with each other, possibly giving rise to feedback 
mechanisms. All this, together with the limitations inherent in both high-altitude 
observations and in model simulations over complex regions, makes it very difficult to 
study EDW and to disentangle its causes.  

- The snow/ice albedo feedback, illustrated in a simple way in Fig. 1, is among the 
strongest feedback loops active in the climate system, particularly important in cold 
mountain regions. In response to a temperature increase, more snow or ice melts thus 
decreasing the local albedo, allowing for increased absorption of solar radiation and, 
by consequence, for an enhancement of the initial warming. Since this feedback 
modulates the surface absorption of incoming solar radiation, it is expected to affect 
primarily maximum temperatures (daytime temperatures). Nevertheless, it has been 
found that this feedback also acts in modulating nighttime minimum temperatures, 
especially when decreases in snow cover are accompanied by increases in soil 
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moisture. This feedback is most effective at elevations around the annual 0°C isotherm 
(Pepin and Lundquist, 2008, Palazzi et al., 2017) and it is expected to act 
predominantly at lower elevations earlier in the cold season while at higher elevations 
later on. 

 

 
Figure 1. Sketch on how the ice/snow albedo positive feedback works, resulting in an amplification of 
an initial warming in high-elevation regions.  

 

- Clouds are among the most uncertain components of the climate system, affecting both 
shortwave and longwave radiation. As a consequence, their effect on the climate 
system is twofold. The clouds which are effective in reflecting shortwave radiation can 
lead to cooling, while those which absorb and re-emit terrestrial longwave radiation 
lead to warming. As a consequence, a decrease in cloud cover during the day is 
expected to enhance the maximum temperature, while a decrease in cloud cover 
during the night is expected to lower the minimum temperature. For example, 
observational and model studies conducted over the Tibetan Plateau showed that an 
increase in cloud cover during the night can lead to EDW in the minimum temperature 
in this area (Duan and Wu 2006). Quantifying cloud feedbacks still remain challenging 
and mostly rely on the use of numerical models of the climate system. 
 

- A warmer atmosphere is able to hold more water vapor. Water vapor is a powerful 
greenhouse gas and, as such, it participates in one of the most important feedback 
loops active in the climate system, the water vapor/greenhouse gas feedback: more 
water vapour in the atmosphere leads to more warming which leads to more water 
vapour, and so on and so forth. Increases in surface specific humidity have been 
suggested to be partly responsible for a rapid increase in surface warming in the 
Tibetan Plateau (Rangwala et al. 2010) in the late 20th century. This is related to the 
relationship between the increases in specific humidity and the increases in 
downward longwave radiation (DLR), which produces a surface warming. Although 
increases in downward longwave radiation associated with increasing specific 
humidity occur globally, the sensitivity is non-linear and it is enhanced when the initial 
humidity is low as is commonly found at high elevations during the cold season.  

 
- Absorbing aerosols like black carbon (soot) and dust are additional contributors to 

warming the climate system. In their review paper, Ramanathan and Carmichael 
(2008) suggested that black carbon in the Himalayan Mountains arising from 
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anthropogenic activities might be responsible for half the total warming there during 
the last decades. Because black carbon both absorbs solar radiation in the troposphere 
and decreases surface albedo when deposited on snow or ice, it is very difficult to 
assess its effect on elevation-dependent warming. Depending on the elevation at which 
black carbon is deposited it could either contribute to enhanced or reduced warming 
with elevation during the melt season. Similar to black carbon, dust absorbs radiation 
within the atmosphere and reduces surface albedo when deposited on snow. Similarly 
to black carbon, however, the impact of dust on elevation-dependent warming will 
depend on the elevation at which it is deposited.  

Difficulties in studying EDW 

Even ignoring external forcing factors impinging upon mountains such as land use/cover 
changes or climate and environmental changes, features like topography, slope, aspect 
and exposure alone would make the temperatures measured in mountain regions 
characterized by extreme local-scale variability. All this makes it difficult to study climate 
processes in the mountains and to understand the mechanisms driving amplified warming 
rates in high-altitude regions.  

The complexity and heterogeneity of mountain environments and climate would require 
a dense and homogeneous network of ground stations up to the highest altitudes, which 
is not the situation generally encountered in most mountain areas: the picture provided 
by all observation-based datasets is, therefore, biased towards the lower elevations. Long-
term time series are moreover required to calculate temperature trends and to assess the 
their dependence on elevation, but meteorological stations with at least 20-30 years of 
records are very few at very high elevations (Pepin et al., 2015). In spite of these 
limitations, the majority of studies on EDW is based on the analysis of surface station 
observations, and a few of them are based on estimates of land surface temperature from 
satellite (e.g., Qin et al. 2009). Most observational studies indicate that warming rates are 
amplified with elevation, depending on the season, the region of study and the analysed 
variable (usually either the minimum or maximum daily temperature). There are also 
studies, however, showing no clear correlation between temperature trends and surface 
elevation and others depicting more complex relationships. “Mixed” results on EDW are 
likely dependent on the limitations of the current networks of in situ stations, on the 
presence of possible non-climatic artifacts associated with changes in measurement 
practices, on the different methods adopted to homogenize time series and on procedures 
used to interpolate in situ station data.  

The use of climate models, both global and regional, to study EDW allows to overcome 
some of the inadequacies inherent in all observing systems especially when trying to 
identify the main mechanisms at work. The output of numerical models, in fact, includes 
all the variables needed to build a picture of the mechanisms driving EDW, at a given 
spatial and temporal resolution, and long simulations can be run both to reproduce the 
past and to study future projections. A majority of model studies on EDW is based on 
global climate models, in spite of their coarse horizontal resolutions (on average coarser 
than 120 km; Taylor et al. 2012). Some studies used simulations from a single GCM (e.g., 
Fyfe and Flato 1999; Liu et al. 2009; Yan et al. 2016), while others analysed the output of 
several models with different characteristics, such as the latest CMIP5 GCM ensemble (e.g., 
Rangwala et al. 2013, 2016; Palazzi et al. 2017).  

Over the recent decades, global climate models have considerably increased the number 
of components incorporated within them and the degree of detail in the description of the 
key climate processes (IPCC 2013). At the same time, global models have been tested at 
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increasing horizontal resolutions reaching, at least in specific experiments, grid scales that 
are typically achieved by numerical weather prediction models (e.g., Demory et al. 2014; 
Davini et al. 2017). 

 

2. EDW projections for the Alpine region and related dataset 

The results of one study (Palazzi et al., 2018) which analyses EDW in three different 
mountain regions (shown in Fig. 2) using high-resolution simulations of one state-of-the-
art Global Climate Model are summarized in this section, focusing on one of the analysed 
regions only, the Greater Alpine Region (GAR). We used EC-Earth (Hazeleger et al. 2010, 
2012) climate simulations at five different spatial resolutions, from ∼125 to ∼16 km, the 
coarsest resolution being the one typically used in state-of-the-art global climate model 
simulations (e.g. in CMIP5), while the finest being the resolution typically used for 
numerical weather predictions. One aim of this study, in fact, was to investigate the impact 
of the model spatial resolution on the representation of EDW and its driving mechanisms.  

 

 

Figure 2. Topographic maps of the three study areas (left: Rocky Mountains; middle: Greater Alpine 
Region; right: Hindu Kush–Karakoram–Himalaya–Tibetan Plateau) from a high-resolution Digital 
Elevation Model at 0.0167° resolution. Green areas lie below 500 m a.s.l. and are excluded in our 
analysis (Palazzi et al., 2018) 

 

The first step to assess EDW is to quantify a warming signal. In this study, this is evaluated 
as the difference between the 2039–2068 future climatology and the 1979–2008 past 
climatology of the minimum and of the maximum daily temperature (Δtasmin, Δtasmax). 
The temperature change between the future and past climatology is evaluated on a 
seasonal basis using the standard definition of the seasons for the Northern Hemisphere 
mid-latitudes: winter (December–February, DJF), spring (March– May, MAM), summer 
(June–August, JJA), and autumn (September–November, SON).  

The second step is to assess whether the warming signal in minimum and maximum 
temperatures exhibits a dependence on elevation. As commonly done in the literature (e.g. 
Pepin and Lundquist 2008; Liu et al. 2009; Qin et al. 2009; Rangwala et al. 2010, 2012; 
Palazzi et al. 2017), we calculate the slope obtained by linear regression of timeseries of 
daily minimum or maximum temperature against the model elevation and we assess its 
statistical significance. The regression is performed both at each grid point and using data 
averaged into elevational bands. The statistical significance of the linear slopes is assessed 
using a Student’s t test, which tests against the null hypothesis that the coefficient of the 
regression is zero (no slope). We also explore a methodology based on grouping the 
temperature change data into elevation bins and then fitting the Probability Density 
Function (PDF) of the temperature changes evaluated for each bin with a LOcal regrESSion 
(LOESS) method. In fact, the uneven distribution of points at different elevations may have 
an impact on the slope evaluation and the dependence of the temperature changes with 
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elevation may not be linear. Using the PDF solves the first issue while the LOESS regression 
would highlight possible departures from linearity. Only grid cells with elevation above 
500 m a.s.l. are considered in order to reduce some of the influence of the coastal areas or 
of other areas generating potential interference, such as the Po Valley in the Greater Alpine 
Region. 

Figures 3 and 4 show, for the minimum and maximum temperature respectively and for 
the GAR, in black the regression line evaluated using all data, in green the regression line 
evaluated fitting the average of the data (green dots) in each 100 m-thick elevational bin, 
and in blue a LOESS fitting curve. Purple shading indicates the probability density of a 
given minimum temperature change in each elevation bin.  

 

 

Figure 3. Dependence of minimum daily temperature (tasmin) on elevation for the Greater Alpine 
Region. The black line is the regression line evaluated using all data while the green line that 
evaluated fitting the average of the data (green dots) into each elevational bin. Superimposed is the 
PDFs of the temperature change calculated for each bin (shading). The LOESS curved fitting line is 
also shown in blue. From Palazzi et al., 2018 (supplementary material) 

 

 

Figure 5 shows, for each model resolution (displayed along the x-axis) and season (each 
column plot), the value of the slope describing the linear relationship between either the 
minimum or maximum temperature change and the elevation (corresponding to the slope 
of the green line in Figs. 3 and 4). Each grey circle indicates the output of one individual 
model member at each resolution, while the black circle denotes the multi-member mean. 
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Empty symbols indicate elevational gradients of surface warming that are not statistically 
significant. Positive slopes in Fig. 5 indicate EDW, while negative slopes highlight the 
situations in which there is still warming but it is larger at lower elevations (assuming a 
linear relationship) and we do not focus on this kind of occurrences. Finally, Table 1 
summarizes the information provided in Fig. 5. 

 

 

Figure 4. The same as Figure 3, for the maximum temperature (tasmax). From Palazzi et al., 2018 
(supplementary material) 

 

In the Greater Alpine Region, EDW is detected in summer and autumn at the three finest 
resolutions, while in winter and spring it is detected only at the coarsest resolutions (T255 
and T159 in winter, T159 in spring). The relationship between warming rates and 
elevation is well represented by a linear model, as clearly visible in Figs. 3 and 4.. Further, 
the PDF of the temperature change in each bin is well peaked around its mean value, which 
allows to have an unambiguous estimate of the warming expected at each elevation.  

The season showing the most striking evidence of EDW in both tasmin and tasmax is 
autumn (this is true also for the Rocky Mountains and the Himalayas, which are not 
discussed in this report, see Palazzi et al., 2018 for details). In fact, the elevational 
gradients of warming rates in SON exhibit always a positive and statistically significant 
slope, except for tasmax at t255 and t159 resolutions, and the spread among the individual 
model realizations at each resolution is overall smaller than in the other seasons. EDW is 
not simulated for tasmin in DJF and in MAM: the statistically significant slopes which we 
found, in fact, are all negative. In some cases, we find considerable variability of the 
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response among the ensemble members at a given resolution and, in a few cases, some 
members present both positive and negative slopes. We do not find any clear signal in the 
response of the different members run in this set of simulations to be directly ascribable 
to the two possible models used in SPHINX (i.e., the use of either base physics or stochastic 
parameterizations). This is visible in Fig. 5 looking at the highest resolution (t1279) 
results, as the only two members available at this resolution, run either with or without 
stochastic parameterizations, do not provide significantly different EDW response. 

 

Figure 5. Elevational gradients of the seasonal temperature change in the Greater Alpine Region, for 
each ensemble member at different EC-Earth model resolutions. The minimum and maximum 
temperature changes are shown in the top and bottom panels, respectively, while different seasons 
are organized in the different columns. Each gray circle is the output of one individual model 
ensemble member at each resolution, while the black circle denotes the multi-member mean. The 
open symbols represent statistically non-significant elevational gradients of warming rates. From 
Palazzi et al., 2018. 

 

Table 1. Cases where EDW (i.e., enhanced warming rates with elevation) is detected or not detected 
(indicated by Y and N respectively). Parentheses indicate cases where the signal is not statistically 
significant 

 tasmin tasmax 

 t1279 t799 t511 t255 t159 t1279 t799 t511 t255 t159 

DJF (N) (N) N (N) N N (N) (N) Y Y 

MAM (Y) N N N N (N) N (N) (Y) Y 

JJA Y Y Y (N) (N) Y Y Y N (N) 

SON Y Y Y (Y) Y Y Y Y N (N) 

 

In order to identify the variables that may potentially contribute to EDW in the Greater 
Alpine Region we considered the factors whose changes may alter the surface energy 
balance and cause temperature variations, including surface albedo, surface downwelling 
longwave (thermal) and shortwave radiation, and near-surface specific humidity, as already 
suggested by the literature (e.g. Rangwala and Miller 2012; Palazzi et al. 2017). We 
calculated the change between the average in the period 2039–2068 and the average in 
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the period 1979–2008 of the possible EDW drivers (as done for the temperatures) and, in 
particular, the absolute change for albedo (Δalbedo) and the fractional (or normalized) 
change for rlds, rsds, and huss (Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0). Fractional changes are 
calculated relative to the averaged climatology between the mean in the years 1979–2008 
and the mean in the years 2039–2068). In order for the variables listed above - Δalbedo, 
Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0 – to be actual EDW drivers, the following conditions 
have to be satisfied: 

1) they have to exhibit a dependence on the elevation and the sign of that dependence 
has to be physically consistent with enhanced warming with elevation, and  

2) they have to spatially correlate with temperature variations even if the dependence 
on elevation is removed.  

Condition (1) implies that the changes in radiations (rsds, rlds) and in huss have to exhibit 
the same elevational dependence as the temperature change does: if these variables 
increase (decrease) also the temperature change increases (decreases). On the contrary, 
changes in albedo have to exhibit an elevational gradient of opposite sign, since an increase 
in albedo leads to a reduction of absorbed radiation at the surface and, therefore, to a 
decrease in surface warming. Basically, condition (1) ensures that the variation with 
altitude of a given variable and the altitudinal dependence of temperature changes are 
related with each other by some physical mechanisms. Condition (2) is essential to identify 
those variables which still (spatially) correlate with temperature changes independently 
of elevation.  

To disentangle the relative importance of the identified EDW drivers in each season and 
region we set up a multiple linear regression model (see Eq. 1) in which the change in daily 
minimum or maximum temperature is the predictand and the possible drivers are the 
predictors. Predictors and the predictand are altitude-detrended, by removing the linear 
fit on elevation, and standardized, by dividing each change by its standard deviation over 
the whole spatial domain. 

 

    (1) 

 

In Eq. 1 the drivers correspond to the variables that, among Δalbedo, Δrlds∕rlds0, 
Δrsds∕rsds0, and Δhuss∕huss0, fulfil conditions (1) and (2) listed above. This approach 
allows to test all the possible combinations of the n predictors that lead to a different 
regression model. Overall, the possible regression models are (2n− 1) and their ability in 
predicting the temperature change is quantified by the coefficient of determination R2 that 
measures the proportion of the variance of the predictand that they can explain: the closer 
R2 is to 1, the better the prediction is. At the same time, the value of R2 allows to quantify 
how much of the EDW response in the model is not explained by the predictors considered. 
By construction, the regression models including a larger number of predictors are 
associated with higher values of R2. Therefore, to measure the relative quality of the 
regression models we use the Akaike information criterion corrected for finite sample 
sizes (AICc), which favors the models with less predictors and penalizes those with more 
(the lower the AICc, the better the model). 

We analyse the role of the four variables, possible drivers of EDW (Δalbedo, Δrlds∕rlds0, 
Δrsds∕rsds0, Δhuss∕huss0) in the GAR, in the different seasons and assessing whether 
model simulations performed at different spatial resolutions present different behaviours. 
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From a practical point of view we proceed with the calculation of the three linear Pearson 
correlation coefficients described below, useful to check if the conditions (1) and (2) are 
fulfilled: 

– R1, between either Δtasmin or Δtasmax and elevation, and its statistical significance, to 
highlight the cases with or without EDW. 

– R2, between each of the four possible EDW drivers and elevation, and its statistical 
significance; 

– R3, between the (minimum, maximum) temperature change and each of the four possible 
EDW drivers, and its statistical significance. R3 is calculated after having removed the 
dependence on elevation of each variable, which is obtained by considering the residuals 
compared to a linear fit respect to elevation. 

 

tasmin tasmax 

  

 

Figure 6. Correlation coefficient between each of the seven possible EDW drivers and the minimum 
temperature change on the left and the maximum temperature change on the right) in the four 
seasons. The drivers are displayed along the x-axis. Grey boxes indicate the cases in which there is no 
EDW or it is not statistically significant. White boxes identify the cases in which R2 is negative or not 
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statistically-significant and the spatial correlation between a possible driver of EDW and the 
temperature change is negative. Modified from Palazzi et al., 2018. 

 

A positive sign of R2 for Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0 and −Δalbedo is physically 
consistent with EDW (i.e., with the condition R1 > 0). Therefore, having R2 greater than 
zero and statistically significant is one necessary condition for those variables to be 
actually drivers of EDW. For the variables that fulfil this condition we compute the 
correlation coefficient R3, measuring their spatial correlation with the temperature 
change, after having detrended all variables for elevation. The R3 values are shown in Fig. 
6 for tasmin (left column) and tasmax (right column). Grey boxes indicate the cases in 
which there is no EDW or it is not statistically significant, based on the values of R1, while 
white boxes identify the situations in which  

– for a given variable, R2 is negative or not statistically- significant, which indicates that 
the variable certainly cannot be a driver of EDW. We recall that the condition R2 < 0 applies 
also to the change in albedo since we use − Δalbedo in the calculations, 

– the spatial correlation between a possible driver of EDW and the temperature change is 
negative. 

Figure 6 thus indicates what are the possible drivers of future EDW in the GAR and how 
much they correlate (value of R3) with the change in the minimum and maximum 
temperature. The relative contribution to EDW of the different drivers can be assessed 
using the multiple linear regression model described by Eq. 1. Since we notice that the 
season showing the strongest evidence of EDW is SON, for simplicity in the following we 
discuss in detail the results of application of the multiple linear regression model for SON 
only. The other seasons are described in a more qualitative way instead. In the GAR, the 
three drivers of the changes in tasmin in JJA and SON (in DJF and MAM EC-Earth did not 
show EDW) are Δalbedo, Δrlds∕rlds0, and Δhuss∕huss0. The only EC-Earth resolutions 
which are able to identify the simultaneous contribution of all three drivers are T1279 and 
T799 and we apply the multiple linear regression model only for these two resolutions 
(and for SON). The results are summarized in Table 2, left columns. At T1279, the four 
models including Δrlds∕rlds0 as a predictor show the highest values of explained variance 
among the seven regression models. At T799 the first three models and the fifth in the rank 
include Δrlds∕rlds0, the model combining Δalbedo and Δhuss∕huss0 ranking fourth. At both 
resolutions, among the three single-predictor models, the one with Δrlds∕rlds0 shows the 
highest R2. The three multi-predictor models including Δrlds∕rlds0 in conjunction with any 
other driver are capable of accounting for more than half the variance of the predictand at 
T799 (more than 20% at T1279). Therefore, Δrlds∕rlds0 is found, among the drivers 
which we considered, essential to drive the changes in tasmin in SON in the GAR. 

As for the changes in tasmax, we identify as drivers in DJF Δalbedo, Δrlds∕rlds0, and 
Δhuss∕huss0 at T255 and Δalbedo and Δhuss∕huss0 at T159. In JJA, the drivers are Δalbedo 
and Δrlds∕rlds0 and the signal is robust across all EC-Earth resolutions (T1279, T799, 
T511) at which EDW is found. In SON, the drivers are Δalbedo and Δrlds∕rlds0 at T511 and 
Δalbedo, Δrlds∕rlds0 and Δhuss∕huss0 at T1279 and T799. For the latter two resolutions 
we discuss the results of application of the multiple linear regression model to study the 
relative contribution of the three identified drivers (see the right columns in Table 2). 
Δhuss∕huss0 emerges as the most important driver at T1279, while Δalbedo is the most 
important driver at T799. In both cases the proportion of the maximum variance explained 
by the best-performing regression model is quite low (44% at T1279 and 41% at T799). 
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In general, our analysis shows that the more frequent EDW drivers in all seasons are the 
changes in albedo and in downward thermal radiation and this is reflected in both daytime 
and nighttime warming. It is clear that our picture omits other factors which may 
contribute to EDW in the different regions. It is interesting to observe that in the Alps, and 
at the coarsest horizontal resolutions only, a significant EDW signal related to albedo 
changes is observed in the DJF season. At the coarsest resolutions, the orography is 
smooth, and the highest elevations are not realistically represented in the climate model. 
This result seems to suggest that the “model’s highest elevations” might undergo an earlier 
(winter) transition from being snow covered to being snow free in the future in winter 
months. Of course this signal is an artifact typical of the coarsest resolutions and 
disappears at finer resolutions when the orography is represented with more accuracy. On 
the contrary, the finest resolutions are the only ones able to catch the change in albedo as 
an EDW driver in SON in the GAR. This result would suggest an added value of the finest 
resolution simulations in the Alpine area. 

 

Table 2. Application of the Eq. 1 including the thee predictors (Δalbedo, Δhuss∕huss0 and Δrlds∕rlds0) 
of the minimum (left) and maximum (right) temperature change in the GAR in SON. For each of the 
seven regression models obtained from the combination of the three predictors, the table shows the 
values of the regression coefficients a1 (referring to Δalbedo), a2 (referring to Δhuss∕huss0) and a3 
(referring to Δrlds∕rlds ), of the coefficient of determination R2 and of the AICc. See Palazzi et al., 
2018. 

 

 

Finally, it is important to stress that enhancing the spatial resolution in climate models 
may be crucial especially in complex topography, but also improvements in model 
parameterizations, particularly those involving surface processes in high-mountain areas, 
the snow-albedo and cloud-radiation feedbacks, may allow for a better simulation of EDW 
in the models. Considering the importance that mountains have as early warning 
indicators of the consequences of global warming, EDW is a phenomenon that calls for 
further research and efforts, both in terms of observations and of model simulations. 
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Employed Datasets and data availability 

Model data 

The specific set of simulations with the EC-Earth GCM presented above were performed in 
the framework of the PRACE project “Climate SPHINX” (Stochastic Physics HIgh resolutioN 
eXperiments), whose detailed description can be found in Davini et al. (2017) and in the 
project web pages (http://www.to.isac.cnr.it/sphinx/). Briefly, these are atmosphere-only 
experiments extending for 30 years in the past (from 1979 to 2008) and 30 years in the 
future (from 2039 to 2068) using forcing conditions from the Representative 
Concentration Pathway emission scenario RCP 8.5 (Riahi et al. 2011), which assumes no 
stabilization in greenhouse gas emissions during the 21st century. For each resolution, 
more than one model member was produced. However, owing to computational costs, a 
different number of EC-Earth members is available for each resolution, from twenty 
(coarsest resolution) down to two (finest resolution). A peculiarity of the SPHINX 
experiment is that half of the members at each resolution was run including base physics 
while the other half using stochastic parameterizations (Davini et al. 2017), the latter being 
a way to include small-scale processes in coarse resolution without being computationally-
demanding. These ensembles gave us the opportunity to gauge both the internal variability 
of the EC-Earth model and the uncertainty associated with the specific model chosen 
(either as model implement base physics and the model with stochastic 
parameterizations).  The SPHINX dataset can be accessed upon registration here: 
http://wilma.to.isac.cnr.it/sphinx/?q=content/data-access. The processed SPHINX data 
for the EDW analysis in the Alpine region presented above can be requested sending an 
email to: e.palazzi@isac.cnr.it. 

Observation-based data 

As already mentioned in the introduction, the lack of a dense and homogeneous network 
of in-situ stations over mountain areas, especially up to the higher elevations represents a 
limitation for the analysis and understanding of EDW. This holds true also for the Greater 
Alpine Region (GAR), though being one of the most instrumented mountain area. The study 
presented above employs model data to study EDW both because they are more suitable 
when trying to understand the mechanisms at work and because of the lack of a high-
resolution and homogeneous in-situ station network for the entire Alpine chain.  

However, we made an exercise also employing an observation-based gridded dataset to 
assess EDW in the Alps over the past decades, the HISTALP dataset 
(http://www.zamg.ac.at/histalp/). It consists of monthly homogenised temperature, 
pressure, precipitation, sunshine and cloudiness records for the Greater Alpine Region, 
with a spatial resolution of about 0.08° latitude-longitude. The longest temperature and 
air pressure series extend back to 1760, precipitation to 1800, cloudiness to the 1840s and 
sunshine to the 1880s. We analysed this dataset to assess EDW in the GAR between 1971 
and 2015, by calculating, for each season, the change between the mean temperature 
climatology over the period 1971-1990 and the temperature climatology over the period 
1995-2014 and thus proceeding with the EDW assessment as explained above in this 
Section. 

Using the same graphical visualization employed for the analysis of the EC-Earth model 
data, we summarize the obtained results in Fig 7. Our preliminary results, deserving 
further investigation in the future, show that EDW is observed in the Alps over the period 
1971-2014 only in winter and spring (see the green line in the plots) while surface 
warming has decreased with elevation in summer and autumn. 

http://wilma.to.isac.cnr.it/sphinx/?q=content/data-access
http://www.zamg.ac.at/histalp/


 14 

 

Winter 

 

Spring 

 

Summer Autumn 

  

Figure 7. Dependence of mean daily temperature on elevation for the Greater Alpine Region 
using the HISTALP dataset. The black line is the regression line evaluated using all data while 
the green line that evaluated fitting the average of the data (green dots) into elevational bins. 
Superimposed is the PDFs of the temperature change calculated for each bin (shading). The 
LOESS curved fitting line is also shown in blue.  

 

The processed HISTALP data for the EDW analysis in the Alpine region can be requested 
sending an email to: e.palazzi@isac.cnr.it. 
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- Hazeleger W, Severijns C, Semmler T, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E, 
Baldasano JM, Bintanja R, Bougeault P, Cabal- lero R, Ekman AML, Christensen JH, van den 
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